



# PRELIMINARY CHEMISTRY

Properties & Structure of Matter **Module 1** 



#### **BONDING**

Theory Booklet 4/4

## **CONTACT US**

0490 818 198

(7) hero\_education

contact@heroeducation.com.au

heroeducation.com.au

# **CONTENTS**

## MODULE 1: PROPERTIES & STRUCTURE OF MATTER

SUBMODULE: BONDING

| Metallic, Ionic and Covalent Compounds     | 1  |
|--------------------------------------------|----|
| IUPAC Nomenclature of Inorganic Substances | 10 |
| Lewis Electron Dot Diagrams                | 21 |
| Shapes of Molecular Substances             | 22 |
| Polarity of Molecules                      | 27 |
| Intermolecular Forces                      | 30 |
| Physical Properties of Elements            | 39 |
| Physical Properties of Compounds           | 41 |
| Allotropes                                 | 48 |



## 4. BONDING

- investigate the different chemical structures of atoms and elements, including but not limited to:
  - ionic networks
  - covalent lattices (including diamond and silicon dioxide)
  - covalent networks

What is the metallic bond?

• investigate the role of electronegativity in determining the ionic or covalent nature of bonds between atoms

## **Metallic Compounds**

0

o Metals are a three-dimension lattice of positive metal cations immersed in a sea of delocalised (valence) electrons.

| What is a lattice? |                           |                    |  |
|--------------------|---------------------------|--------------------|--|
|                    |                           |                    |  |
| Metallic compoun   | ds are held together by t | the metallic bond. |  |

The strength of the metallic bond increases with the number of valence electrons.



© heroeducation.com.au Page 1 / 57



## **Ionic Compounds**

o Ionic compounds are a three-dimensional lattice of oppositely charged ions that are commonly formed in a reaction between a metal and non-metal which involve the *transfer of electrons*.

#### FORMATION OF IONIC COMPOUNDS

- o Ionic compounds consist of metals that form cations (positively charged) and non-metals that form anions (negatively charged).
- o In order to obtain a stable electron configuration, elements can either obtain a
  - Full valence electron shell or
  - Have eight valence electrons (octet)

| How do we determ | nine the maximum occupancy of electrons in a shell? |
|------------------|-----------------------------------------------------|
|                  |                                                     |
|                  |                                                     |
|                  |                                                     |
|                  |                                                     |
|                  |                                                     |
|                  |                                                     |

- o Most metals are in Groups I, II and III of the Periodic Table. They have a tendency to lose electrons (oxidation) in order to achieve a stable electron configuration.
- o Most non-metals are in Groups IV, V, VI, VII and VIII of the Periodic Table. They have a tendency to gain electrons (reduction) in order to achieve a stable electron configuration.
- o Thus, an electron will readily transfer from a metal to a non-metal, causing them to form ions from the deficiency and excess of electrons respectively.

© heroeducation.com.au Page 2 / 57



 $\circ$  For example, let's consider the reaction between sodium (Na) and chlorine (Cl).

Sodium is a metallic element in Group I. Hence it has one valence electron and will readily donate it to a non-metal to form a cation.

Chloride is a non-metallic element in Group VII. Hence it has seven valence electrons and will readily accept an electron from a metal to form an anion.



In the above diagram, only the valence electrons are shown.

- o As a result of the electron transfer, a positive sodium ion and a negative chlorine ion are formed. Since both ions are oppositely charged, they experience electrostatic attraction known as *ionic bonds*.
- Hence, the formation of an ionic compounds sodium chloride (NaCl)







- o When determining the formula for the ionic compound formed, it is really important to consider the valency of the metal and non-metal.
- o For example, consider the reaction between magnesium (Mg) and chlorine (Cl). The valency of magnesium is 2+ while the valency of chlorine is 1-.

In other words, each magnesium atom will donate TWO electrons while each chlorine atom will accept only ONE electron. Hence, each magnesium atom will react with two chlorine atoms.

Draw a diagram to represent the chemical reaction between magnesium and chlorine – use the diagrams in Page 3 for reference.



© heroeducation.com.au Page 4 / 57



#### STRUCTURE OF AN IONIC COMPOUND

- o Ionic compounds exist in a three-dimensions lattice network of oppositely charged ions.
- o The ions (cation, anion) are held together by the ionic bond.

| Describe the r | nature and | strength of i                           | onic bonds.                             |                                         |       |                   |
|----------------|------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------|-------------------|
|                |            |                                         |                                         |                                         |       |                   |
|                |            |                                         |                                         |                                         |       |                   |
|                |            |                                         |                                         |                                         |       |                   |
|                |            | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••••• | • • • • • • • • • |

o Below is the structure for a sodium chloride lattice network.



case, referring to the role of electronegativity.

Ionic compounds always consist of a metal and a non-metal. Explain why this is the

© heroeducation.com.au Page 5 / 57



#### **Covalent Compounds**

- o Covalent compounds always consist of a non-metal and a non-metal.
- o Non-metals have a tendency to gain electrons in order to achieve a stable electron configuration with eight valence electrons.
- o As such, when two non-metals react, there will *not* be a transfer of electrons as they are both highly electronegative (unlike metals).
- o Instead, they will form a covalent bond which involves the *sharing of electrons* where they both co-own a shared pair of electrons.

Let's consider the example of a hydrogen (H) atom with a single electron in its valence shell. In order to achieve a stable electron configuration, it requires a full outer shell of 2 electrons (using  $2n^2$ ).

Hence, when two hydrogen atoms react to form a diatomic molecule  $(H_2)$ , they will form a single covalent bond.



o Covalent bonds are very strong and require a lot of energy to break. It is an *intramolecular* force as it is a force of attraction between atoms inside a discrete molecule.

| The boiling point of hydrogen gas, $H_{2(g)}$ , is $-259.92^{o}C$ . Justify its low boiling point |
|---------------------------------------------------------------------------------------------------|
| despite the strong covalent bonds between the two hydrogen atoms.                                 |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |

© heroeducation.com.au Page 6 / 57



## **COVALENT MOLECULAR**

o Covalent molecular compounds are DISCRETE.

| 0 | Atoms are chemically bonded together by the sharing of electrons (covalent bonds)       |
|---|-----------------------------------------------------------------------------------------|
|   | to form <i>molecules</i> , but the molecules exist independently of each other and only |
|   | experience physical intermolecular attractions – they do not exist in a lattice.        |
|   |                                                                                         |

| What are interm | olecular forces (IMF) ? |  |
|-----------------|-------------------------|--|
|                 |                         |  |
|                 |                         |  |

The diagram below depicts two water molecules  $(H_2O)$  that experience intermolecular forces (dotted line).



© heroeducation.com.au Page 7 / 57



#### **COVALENT NETWORK**

- Covalent network compounds are solid LATTICES with the atoms held together by the sharing of electrons – strong covalent bonds.
- Examples of elements that exist in a covalent network are listed below.
   Memorise them.
  - Boron (*B*)
  - Silicon (Si)
  - Germanium (Ge)
  - Carbon (C, diamond)
  - Silicon ( $SiO_2$ , quartz)
- o Below is the covalent network of diamond. Each carbon atom is covalently bonded to four other carbon atoms to form a lattice structure.



The boiling point of carbon (diamond) is 3550°C. Both water and diamond form covalent bonds between atoms. Explain why the boiling point of diamond is so much higher.

© heroeducation.com.au



# Concept Check 4.1 [DEVELOPMENT] (4 marks)

| Compare the structure and bonding of metallic, ionic, covalent molecular and covalent network compounds, including diagrams in your answer.  4 |
|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |